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TECHNICAL RZPORT No 332

SLOT INJECTION OF REACTIVE GASES IN

LAMINAR FLOW WITH APPLICATION TO HYDROGEN

DUMPING

By Paul A. Taub

ABSTRACT 3 3967

The slot injection of reactive gases into a high speed airstream has
been investigated. The chemical and iraonsport properties have been simplifiec
and calculations have been carried out for tne case of a prescribed constant
wall temperature,

Computations for hydrogen injection into an airstream flowing over &
flat plate are presented and compared with the related, but more restricted
theory of Libby and Schetz.

Results illustrate the advantages of injecting cold gases into the

boundary layers of launch vehicles. In many cases, reactions may be assumea

to occur; then, it is seen that the heat transier rise associated with combustion.

may be delayed for substantial distances downstream from a slot injector and

occurs in a region of relatively low heat transfer,




INTRODUCTION

During the boost phase of a missile flight, chemically reactive zases
may be dumped overboard from the upper stages of the vehicle. Combustion
of these gases with the high speed airstream can lead to critical heating and
alterations of the forces and moments influencing the vehicle,

A series of studies intended to permit evaluation of the elfects of gas.
discharges is being carried out. In Ref. 1 the available ignition délay
characteristics associated with the induction time of hydrogen air mixtures
were applied to a typi::al launch trajectory in order to estimate the minimum
flow lengths according to the chemical kinetics of such mixtures. It was
found that minimum lengths occur at aititudes of about 150, 000 feet, where
the flight velocity is about 6, 600 {t/sec. At lower altitudes, the static
temperatures in the neighborhood of the vehicle are relatively low, while at
higher altitudes, the static pressures are low; lengths required for heat
release are considerably larger at altitudes othoer than that yielding the min-
imum leugth.

The pre-ent study is concerned with the injection of gaseous hydrogen

from a slot. The flow properties and configuration have been highly idealizca

in order to make the analysis tractabie; the configuration is shown scaernat
ally in Fig. 1. The flow is assumecd o be laminar, with simple transport
properties, (i.e. unit Prandatl and Lewis numbers) and with the gases in
chemical eqguilibrium so tiat the rates are controiled by mixing., The wail

temperature is taken to be constant aithough this assumption complicates

the analysis.
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Libby and Schetz (Ref. 2) have provided an analysis of the problem
based on satisfaction of the integral boundary layer equations with profiles
of velocity, total enthalpy and e¢lement mass iractions generated by solutions
of the related Carrier-Oseen flow. As in many integral methods, there arise
restrictions on the applicability of the analysis associated with the assumed

profiles, In this case, the velocity ratio uj /ue is restricted to the range

1 uj

3 <—;’L- < 1. An additional, more complex restriction related to the
e

enthalpies also prevails; it will be described below.

In the present report, the analysis of Ref. 2 is revised so as to
remove the aforementioned restrictions. The solutions to the related flow
are employed here, but the coordinate stretching, which in Ref. 2 was based

A ]
on satisfying the complete equations on the average, is herein determined by

satisfying the complete equations along a line within the boundary layer. Such

a technique corresponds to collocation.

In the next section, the analysis extended by collocation is reviewed ani

compared with the relevent sections oi Ref. 2. Subsequently, it is employed
to show the effect of equilibrium chemical behavior on heat transfer to the
surface of the vehicle under conditions consistent with the basic assumptions
of the analysis.

The author is pleased to acknowledge the helpiul suggestions of
Dr. Paul A. Libby, Dr. Joseph A. Schetz, and the help of Mrs. Leatrice

Groffman in carrying out the numerical computations.
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ANALYSIS

As shown in Fig. {1}, the system studied is that of hydrogen injected
into an airstream by means of a wall slot. The boundary layer approxima-
tions are applied; the flow is of the non-similar type associated with the
initial value problem of boundary layer theory, In the following analysis, the
idealizations of laminar, steady and constant pressure flow will be applied.
The influence of boundary layers on the wall ( y= o) and on the splitter plate

(y= a) for x<o is neglected; thus the initial velocity, composition and total

n

enthalpy profiles are taken as step functions. For simplicity, the chemical
behavior is taken to correspond to frozen {low and to the {lame sheet approxi-
mation to equilibrium flow (cf, eg. Rei. 3). The frequently employed
assumptions that the Prandtl aumber and all Lewis numbers are unity, are

used. The p p product, denoted C when non-dimensionalized with respect

to PoHe is taken to be, at most, a function of a streamwise coordinate x.

The equations of miotion are transfornred by a combined Howarth-

Dorodnitsyn and Mangler method.

eg: r‘y A X Zl
: -k K
.2 dy' r r dx'
T = _.___.JO _____pe_____.___ § = vo
14
L P .
—‘p———a a ( i)
e Fe
q = u/ug , v= v¥lue




where k= o and 1 for two-dimensional and axisymmetrical flow, respectively.

As in the method of Ref. 2, approximate solutions are generated in

by

the spirit of the Carrier-Lewis modified Oseen method, by linearizing the

convective operator in the transformed equations to be:

—E}—-+G—a—wﬁ' —é-
£

0 oT

A
u
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where 1' is the effective connective velocity and is an, as yet, undetermined
function of £ (or x ) and may be‘a dificrent function of & for the momentum

eguation than for the species conservation equations or the energy equation.

The velocity 'G'. for a particular equation, 1is determined here by satis{ying

the exact equation along a line in the flow with the solution found from the

corresponding linearized equation.



I: VELOCITY DISTRIBUTION

As a consequence of the above assumptions, the velocity field in the
(£,7) plane may be determined before solution of the energy and species

conservation equations,

The continuity and momentum eqguations form a system of equations

and boundary conditions:

ok aT
~ 80 . A 88 1 5  iCu. aﬁ) (2)
u vV o= = - { — 2

at 0T  peHe 0T | ng 9T |

A A A

u(§»0)= V(g,O)Z 0, u(p,co) =1

; <
2 (o, 7T) ={u3 g o< Tl
1 T >1
where
C = p'u ‘f‘:a = < Dﬁ ~
Pe#e 00

Using the linearization in the momentum equation and appiying the transior-

mation

dS CUC

GE = Ogugna

e e

Reduces the momentum equation to

A

du_BZ\T sz o0: H=zo, T==: u=1
- 2 L, [

dS oT CS=o: D= I o<t <1
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This corresponds to the one-dimensional, semi-infinite heat condu
problem with initial temperature distribution given as a step function about
S=1.

The solution is well known in heat conduction theory ( cf Ref. 4}, and is:

A
| A A T 1-u; . CoT-1 + 1
; u=u, erf |—| # J erf{ P! +enf (T -
| . NS P LN as J4s ()

The coordinate transformation is as yet undetermined; that is, the

AY

effective velocity of convection, u' (S} is unknown a priori. Libby and Scheiz
A . ds . e . .
(2) determine u' {(or equivalently, 4t j by satisiying the momenitum nlegra.

equation at every station along the wall. This satisfied the momentum equation

in the slot flow on the average and gives rise to an algebraic equation for u' or

ke C .
a relation for the variable pouLT, &  as a function of S which reduces to a
eYelia

quadrature, (eg. Eq. (8) of Ref. 2). No restrictions are encountered.

In the present method, the exact dirferential equations are saiisiied

-

!

‘along a line in the flow; that is, ris = t=t {8). The procedure is as
N4
follows:

The exact equations { 2) are writien in che transformed S, T coordinates

as:
C A ~ » A A 2

e du gv C;lc 1 ad v du Cue 528 o

+ —— = + = - L O)
Ay - 2
Pe Up 7i g8 a5 JT Pellafiy U a5 aT Pelelis oT
From the continuiiy equation
N Cu - T " _ C; A
e el . . - -G h —_
VE——— | o= 87 = He  roZiN w7 o
PelieMa B L o g5 . P oDzl L 9T \{J T I
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Since u satisfies the equation:

The momentum eguation (6) at a point of collocation, is reduced to

A
a relation for u'

[(a_ﬁ_ of 7 8l _ (LB @i
5T/ 8T 1 or 972

A

=4

By éppropriately choosing the collocation points (i.e. t{ S, , 18

determined uniquely as a function of S. The choice of such points is discussed

”~
o%a

separately in Section VI. Note, however, that P must never be allowed

to equal zero at a collocation point.

Assuming that C is expressed in terms of S, then the inversion of the

coordinate transformation may be expressed as:

2 S
- PN G
X"aRea < J} i ¥ 4s
Pe Yo C
where
_ Peled
Rea-
He

X » i '\2 # !
Thus, if C is taken as a constant, — = —9-]—‘% = B___li;c_c___a) can be

Na| Pe e n
rd

obtained as a function of 5 witn u; as tae sole parameter. This function is not

shown herein; . in general, C is rot taken constant here, being evaluatec

at the wall.




11. SKIN FRICTION

The general expression for the skin friction coefficient is of interest.

Thus,
A o~ k ! ’
- Jdu Al J7 dan Hele Cr ; ou
w ‘“’w oy w:“w”e FT}W on Oy ~ Na & aTw
Tw e Cr za(:\ (10)
Cs = s =
Pele Pelella 07 1y
and
-k -1/2 -
PeleNa T L 4 ~ L
n.C Cy=(nwS) }ujf(l-u‘j) exp(—‘g)%
L J

A. Comparison Wich Flat Plaite {No Slot)

A . .. . . .
The case of uj=1 is of interest, snce this analysis then corresponds
to an approximate solution of the ilat piaic boundary layer problem; the

i
solution is given in terms of the similarity variable L= N and collocation

[

amounts to satisfying the exact eqguation { 2) at a particular value of t; thus

A .
u' 1s a constant.

. P i
For k=0 or constant r and C = ——w——i—:l
) Pe He
1/2 .o 1/2
[p.u i
(Befe X1 g = D (1)
| He | R

With no slot, the flow 1s sim:ilar int, and collocation is required at

only one specific value of the independent variable (cf Ref, 3).



A e
iy

To recover the Blasius resuit for the ilat plate without injection, orne
must have U'= 0.346, This corresponds o collocating the solution at t== 0.7;
. o ~ . :
if one collocates at length t= 0.7, it is found that u'=0. 303 and that the skin

friction is in error by a 3%. The boundary layer edge corresponding to

A u
u = = .99 is found at t = 2.
u
e
B. Constant p uy Ratio
It is seen that for C taken to be constant, the distribution of
-k . >
Pelela © Rea [pjiCt v C [P e obtained with
= ! wit hy— ma e ootained wit uj
He C t c lo, & | Regipel 4 J

as a parameter. This permits a straightforward comparison of the skin
friction distributions obtained by the method of Ref. 2 (cf Fig. 3) . It will be
noted that, in general, the agreement is satisfactory and that both approximate

methods yield reasonable resuiis.



11

1II. COMPOSITION AND STATE DISTRIBUTIONS

It is convenient toO consider next the solution for the distributions of the
specie mass fractions; this solution requires a specification of the chemical
system. Inthe present report, the external stream will be considered to be
air containing oxygen and nitrogen,and the gas injected from the slot will be
molecular hydrogen. For conditions of interest in a vehicle launch, the
temperatures will be such that no significant dissociation of nitrogen will
occur; thus nitrogen can be treated as an inert diluent. In addition, only
equilibrium or frozen chemical behavior will be considered here; it is
sufficient to consider water as the only product of combustion. As a further
assumption, the equilibrium chemical behavior will be approximated by the

so-called flame sheet model as outlined below.

The specie conservation equations under the assumptions of unity

Prandtl and Lewis numbers may be written for the mass fraction of the ith
component as:
] , -2k
A OY; A 0OY; ) i K t Cu, OY; | r Ta w3 (123
W FTt Y BT T beve 71 | Ma o7 |
with the boundary conditions:
T = 0: E————.I‘;Yi =
ot Y
T = o Yl = Yie
f;-_— 0 VY;L:X’i' ;O<TSl
J
\'i = Yl N T >
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A, Chemistry

The reaction may be represented by

W
—~—

a, .0, +a2,H, +3.76 Ny = b O, + byHa+ byH0 + 3.76 N, (1
The subscripts 1,2,3,4 refer to O,, H;, H;0, and N, respectively.

For unity Lewis numbers the introduction of the element mass fractions
will eliminate the production terms in the specie continuity equations for Oy,

H, and N,. The element mass (ractions are

- s V"") )
- —1 7 e ST RANT- i =V
Y=Y1+ 2W3 §3, ‘IZ:YZ'?‘ \‘\;3 v}._-s 3 Y4—-&4
and are suggested by the conditions of element conservation: : (14)
W, W

\5]11‘-2“[3 \;V3=0 ,\;‘)2-}- \VB \iJBZO, W4=O

Either the equilibrium condition (law of mass action) or the statement Y;= 0

frozen condition) completes the set oi vquations defining the composition.
p 1 I=]

.
For the temperatures of interest here, the equilibrium constants are large
implying small mass fractions for either oxygen or hydrogen. This, in

+

addition to the slot geometry, suggests utilization oi a flame sheet model. At

the flame sheet: Y, = Y,= 0 and from the definitions of Y, and Y,:

Y, Y,.

2 t
"‘—‘[ e ( 1 5)
W 1 Yy oy

Since Y, and Y, are functions of ¢ and 7 this equation defines a relation

between the independent variables which specilies the flame sheet shape.



For the slot problem under discussion the hydrogen is completely
consumed when the flame sheet reaches the wall, (i.e. Tf = 0at§ =¢§ ).
The flame sheet divides the region into two parts, termed I and 1I, in which
Y, = 0 and Y,= 0, respectively. Thus region I extends from the wall (T= 0)
to the flame , as long as T 20; region II extends from the flame sheet
ouiwards to T=o and from the wall outwards when £> g*. At the wall then,
for £; 0 < < é*. Y)W 0 and for § >§*, YZW: 0. Hence, in terms of the
element mass fractions, the specie continuity equation and boundary

conditions are:

i= 1,2,4 Flame Sheet

i=1,2,3,4 Frozen

l ~
——

|
, PYs. 2 Y 0T
=0 £=0: Y. ={ 77

B. Solution for the Elcmient Mass Fractions

As in the solution for the velocity, the convective operator is now

linearized. Thus, the ith slement couservation and continuity equation is

Q>
:ﬁ{
>

o~ ~ . .

0Y; ~ oY; 1 o [Cre aYi )
+ v : “ ry~— P

ag aT og Pl 7 n, 97 |

>

(17)

N N
du ov

ag

with the appropriate boundary conditions.



The transformation:

dSZ “C/Je A

- A ' U”'-_-a” (S)
dg PeUefy U

yields for the linearized energy cquation:

- Z ~~
aY; _ 2" Y;
9S, aT 2

(19)

This corresponds Lo tie unsteady heat conduction problem encountered

in the solution for the velocity, but with different boundary conditions; the

solution is

~ |
Yi= Y, + ert ‘
\

T -1

N4S, |

-erf

-

P |
1

L
»\f4slj

This approximate solution may be compared with the exact equation

and collocated along a line so as to relate S; to x.

the species conscrvation and momentum equations.

A - - E e
oV _ C ue dS  a°Q
=TT, "TIT T3
o7 Palpeny u'' 45, o7
o e 2o
C Ue A OYj A oYy Cae d7T Yy
"nu TV - - 57 ¢
Peligng U 0S, aT Poleng 97
T hus, the collocation condition is;
2 e ~ T
A A, 07 Y4 dS du ! Ju Yy
(u" - u) ——3 = - S v
a chZ‘ 0T o a7
wnere
- Pt
ds ds/dg u' i g ;
- = = " 18 the ralio ot !
dSZ dSZ/dg !

As before

(22)

che effective velocities of convection for

IS
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The forms of the Y; solutions and the collocation condition show that
A . . \ . . . . . .
u'' is independent of the species conservation equation considered; that is,
Ay s s . . . . N . A
u'" is independent of the index i. It is convenilent to determine u 'in terms
of 1! since in this formulation the, as yet, undetermined eifective p {
(i.e. C) variation does not appear. Thus, only before the transiormation
. . R . . Pw Wy
into the physical plane, is it neccssary to evaluate Ce.g., as ———
Pe e
this allows the evaluation of C and the composition to be uncoupled.

In the method of Libby and Schetz (cf. p. 13 of Ref. 2}, the condition
for 1" sets limits upon the jet velocity ratio uj/ue, They find, by requiring

an (Sz= o) to be positive, then uj must lie in the range —;— < uj/ue <1,

C. Flame Sheet Location

As discussed above, the condition for locating the flame sheet is:

Y. .
2 -~ 2
Y, = - 23
W, bf Vi, (23)

—~ P
The Y, and Y, solutions are obtained irom equation { 20) with appropriaic

values for ‘XTi and Y. as
e 1

Y, - Y Yie STl L T-l
- = - 21t ; -ert ! [
b7 e c O Vs, . V3,
- 4 o
(W]
- 1 T+l [ T-1 i
Y, = — . erf !l— -ert -
S I VT | Vs, |
so that the condition is
|'_ ‘ -
2W, — N N P TR Ti -1 |
Y 1-%] =Y, X ;X= — |erf , | - erf ! 25
w, e | 2j X 2 \V4s; | N4, /] (<2)
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Solution for ¥ yields

_ (2WY /W)
X = - i (
( ZWZYIC /\Al ) + Xz‘]

v
&

Thus, T¢ (S,) is determined. The point of impingement of the flame sheet on
the body (i.e., T¢= 0 at S,= S,™) may be calculated by setting T¢ = 0 and
solving for S,

(2W,Y,, [W))

l {
erf -— | = 27)
N4s, | T 2V, TW+ Y (28
In the slot problem:
Y1e= 0. 232 ’ YZ_] = 1, \:\71 :32, \‘VZ: 2
$0 that:
S, =406 (2%)

D. Wall Enthalpy: (Coustant Wall Temperaiure)

It will be necessary for solution of the energy cquation to have the
Gistribution of wall enihalpy. For a constani wall temperature the above
‘distributions of composition when applied to the wall permit the wall enthalpy
to be computed as follows:

s

“quilibrium Chemistry:

2 — —
0<S5,s5,% : h = 5 { Wihy - W;h Y h, Y, +h Y
27220 - Mwg (S2) \'\'1( A R FYRNA Zw) lw Tl Y2yw™ g 4
wooTw C e
. (29)
~ i W o~
S,>8,* : h S,)=h Y + o { Wan - h )YZ +h Y
2 2 WII( 2 lyw “lw W, 3850 2 1w W 4w 4
Frozen Chemisiry:
i S;) = i % h, Y + h Y
lwf (Sz) My \lw they Y2y T4 4
W w
: P {30
= 0 Y + h Y, +h Y
R (I 24 tiw 4, 4 ‘
In general, the wall enthalpy niay be represented by a function of the forms



)
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Iv. SOLUTION FOR THE ENIERGY DISTRIBUTICON

In order to determine tha neat transfer and the flow in the physical,
i.e., X,y plane, it is necessary to find the distribution of total enthalpy. As
long as the distribution of h, can be specified with X, S,S, (or S; as will be
introduced below in connection with the approximate solution of the energy
equation), it is possible to determine a coordinate stretch factor by the col-
location technique.

The energy equation for unity Pranditl and Lewis numbers in terms

of the total enthalpy is:

. on° .3 oh° 1 9 Che 00° (31)
u v = A= = 1
ot oT PeUe 0T ng oT
with
T=0 h® = hy,
T~ h° = hoc
£ =0 hO:h;;o<azl
(] O“
h = }1 e’ T > 1
A, Constant Wall Inthalpy Solution

Comparison of this system of cqualion and boundary conditions with
¥
the momentum equation and boundary conditions shows that a Crocco relation

exists beitween the total enthalpy and the velocity fields if the wall enthalpy

(hy) is constani and if

e}
!
e
!
i
o
-
—
1
=
i~

The Crocco relation is

o _ v N ' o
h® - b= (hy-i¢) (1-0) {33




Thus, the enthalpy solution for constant h,, is:

h’= h -(hw-h;) erf

T + e ) erl
N 4S 2 ['

Note that equation {32) implies a restriction among the flow para-

meters and thus that the solution given by equation ( 34) is applicable to flows

compatible therewith.

B, Constant Wall Temperature Solution

An approximate solution for this case is obtained from the constant
enthalpy solution by making a local similarity assumption as in Ref. 2. At
given § station, the total enthalpy profile is assumed to be that existing for

[aa)

constant wall enthalpy solution with the same value of h,. The given wall

temperature and the solution for the element mass {ractions deiermine the
enthalpy distribution.
A better approximate solution would be found by solving the exact

wall

any

a

wall

Rayleigh-Stokes problem associated witii an arbiirary wall enthalpy disiribu-

tion; this solution is shown in Appendix 1. However, because of the simplicity

of the approximate local similarity solution, it was used in the coliocation

procedure for the energy e quation. Note that the collocation procedure will

inherently compensate for this approximation.
The restriction associated with the constant wall enthalpy case awes
not apply, since the solution may be viewed as coming {rom the associated

Ravyleigh-Stokes problem - in which case, local collocation is performed.
g



Thus, the h® function {equation 34) is assumed to hold for the non-
constant h, boundary condition, in a sysiem of coordinates (7,S;) which is
related to the (7,§) coordinate system by the transformation

- A
dg peuena u''t

(33)

Substituting the h® function ( equation 34) with T&S; as the independent variables,
into the exact energy equation ( ¢f equation 31) and continuity equation, yielas

for the collocation condition, since h, is not constant:

q

A r A A 2,0 A
u'"' |[du 3% | on° A A @R a4 dh ST ,
a fra', i S R T = REEN (36)
| \
L

As in the element conservation equations, it is convenient to determine {4 in
- A - . . .
terms of u'; therefore, it is unnecessary at this point to know C.

InRef. 2 (cfp. 1 eq. 1 ). the condition for an or, in their notation,

A . . . . R .
dg,'=u""'dS gives as an implicit restriction on the allowable values of

(hoj/hoe> , and Ch w(o/h()@ , Vviz:

) 2 2
62 +(1-8%6-2a86"%¢a =0
g, )
where ¢ and 8 are functions of hoj , hWio)and uj)and G:tdgi jo {i.e. at §,

Sz, S3=0).



V. HEAT TRANSFER

The local heat transfer at the wall, in the absence of mass diffusion at

its surface, may be determined by:

oT Ue C oh°
= - K A = - - —
q T 9Y , Pja 0T
Pe
c -1/2 o (37)
JkeC (rs, ) [0 ch o (Sy)) + (B -H ) exp (- ) |
5 - < ;) Thw ¢ is,’ |

—_—

Pe

C= C(S,) is determined from the species mass fraction solutions and from the

wall temperature distribution

c= Pwhw (38)
Pe He
also 4
Pw T Wy - | / Yiy
I R W T W

The viscosity 4, may be found from the following viscosity formula

for mixtures ( sce Rei. 5).

4
\ Uiy Yig
- 7/ 4 (39)
Bw = e v+ w o Y
z_ o (11'_ Co
: J J
J=1
J71
- iy \l/(_). 7. 1//4 -‘ Z
CoaeiHw W
*1j R l\ Wi .
4 1/2




Calculations are presented only for the constant wall temperature

condition. For a nonuniform wall tempecrature distribution, Q'ij must be
found at every streamwise station. Additionally, the wall enthalpy distri-
bution, h,, will differ with the wall temperature distribution and hence

the relation between S; and S is dependent upon this distribution; however,

in the case of constant h,, as already pointed out, S;= S.

A, Comparison With Fiat Plate { No Slot):

The slot flow solution reduces to the flat plate with no injection
when ﬁjz 1, h°j :)hoe; the composition being taken as that in the free
stream.

For the constant wall temperature cgse, h, (o) is also the constant
wall enthalpy of the flat plate problem. The total enthalpy solution for the
case of the flat plate is given by the constant wall enthalpy solution, and
by virtue of the Crocco relation, no scparate coliocation is necessary.

For the iflat plate, the heat transfer is:

ql: - Pw'/—l.w' /< '\_1/2 ,
A (s (% -nty,) (40)

where ' refers to quantities associated with the {lat plate without slot

injection.
Since ithe coordinaie streich is constant,
. 1 hY . Pele a .
S' = = — i Re. s ——— VL
Re u' a o He
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e

and the heat transfer for the flat plate may be written as

2

- ( XZ F’el-‘eue)1

h% - hy'

,_
o
I~

which is also within 3% of the Blasius result for the flat plate.
The ratio of hydrogen injection heat transfer to flat plate heat transfer

is therefore

r
Dy -nw |
| } expl-—1. P
| h@ - hy: jghoe"hw' P 4S3Ji (43,
[

»



VI. CHOICE OF LINE OF COLLOCATION

In this paper a variant of the method of collocation is used to solve a
non-—s.imilar problem. Schetz (cf Ref. 6) lhas applied the collocation technique to
some similar and non-simrilar problems, . Following Schetz( 6)
in the similarity case, the approximate solution to an equation is improved by
determining a coordinate transiormation which allows satisfaction of the
equation at a particular value of the independent variable and determines a
constant coordinate stretching factor; in particular (in Reif. 6), the point
at which the solution is collocated is chosen to be a typical point of the range
of the independent variable, (i.e. near thé 'middle" of the region). In the

case of similar boundary layers, it is possible to choose a value of the

similarity parameter such that the skin friction and heat transfer

4S8

agree with the exact solution to the equations. Since the slot problem is in-

-
t

N 4s ]

but one miust specify the value of S at the point of collocation; strict applica-

herently non-similar, it is not possible to choose a single value of

tion of Shetz' procedure would imply this choice. However, it is possible

T
to choose a 7 =~  value for cach value of S, thereby determining a variable

i~

: : Y : ol - ¢
coordinate stretcn factor. hat a rational basis for choosing —— as a
N 4S ,
function of S exists, may be seen from the following argument: the wall
boundary layer, which is assumed initially zero, must behave, for small S
as a similar boundary layer whose external flow is that of the jet issuinyg irom

the slot. Far downstream, the layer must behave as a similar boundary layer
’ J

with the freestream flow for external conditions. In both instances, the



results of Schetz for similar boundary layers indicate collocation cnould

—
i

be applied at the same valuec of 45 = 1t.

In some respects, the layer adjacent to the wall may be viewed as a
boundary layer with varying ouier conditions: then to recover tne solution for

small and large S, the method of choosing must recover the value of t appropriate

—

to the similar boundary layer ( 3lasius). Also, as l:~1, h;%h ° and Y; —Y; ,
Yy 1ay j ] e 1 195

the Blasius result must be recovcred,.

N

Choosing t as a cons.ani function of S equal to the Blasius value of L is

not suificient since, at a given t, the proiile characteristics chaage with §; in
A
o°v | ou

particular, the ratio of | 7=z~ f changes sign by passing through zero.

!

— e

-~
i

[al]

i
1
The coordinate stretch condition shows this to be a singlular point. Thus

unappealing result may be avoided by colilocating at a valuc of t {S) at which
! £

the layer has similar characteristics. Since most of the layer has ncgative
__;(‘ZA / LAY
BEERY da . . o . . _
values of | ——; collocation is appiicd at values or t for waicn tne ratio

lo7 @ T

has a negative sign.

In the similar bounaary layer v 5 nas a consiant Vaiu:
i oy N (/ A
3 . ; . . . ... utu Oae o )
for any given value of t. Thus, choosini t so that NS | 777~ —! has e
' e o

value found in the colliocacion of the Blasius case, will assure the desired

-

behavior of £ (S). This is cquivalceal o collocating along a line in the flow a
1 o perl

which the profiles have an imporv.asi characteristic kKept consiant.

g}

The toial enthalpy solution is also treaied in the manner described
17
above; in general, the momoentum aad energy equations are not collocated alon

the same lines.
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The element mass fraction solutions sinow a different character; the

l62¢; [a%,

ratiol 572 / 5T

and . total enthalpy solutions, but has a positive sign near the wall and a

does not have a ocnavior similar to that of the velocity

negative sign far from the wall. The sign changes always occur above a
minimum value of t, = N 2/2. Since the solutions are collocated to obtain
the correct wall behavior, the eclement mass fraction solution is collocated
at a specific value of t,{S)<t, in the region near the wall. Comparison with

the results of Ref, 2 indicate t, = .35 along the line of collocation for the

specie continuity equation.
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VII. COORDINATE STRETCH FACTORS

In the local collocation procedure, the coordinate stretch factors
u, u'' and u''t are functions of S; hence, the conditions for the factors may be
looked upon as differential equations for the S; and S, coordinates as functions
of S. With some rearranging, the conditions may . . dten as:

Chemistry Condition

- : TR X !
dS, _ 1 Gl( s) ;c)f;\ ad ) oY /o _Yii x
as & ! o7l T ovl ., S, \oT / oT? | ‘
; W {t=t 2'\[ — ] t2= t‘?_'_i
- S
A
4 = u<S,t2"\fS?-> (44)
S :
at S, Sz =0
- /
dSs oo\
a_gé' = ,\‘.1' /G erf <t'z '\II_O-_——SE i
v J as
Enthalpy Condition
- - ~
as { A . “"4:\ \/jw aho /8 ‘ﬂu
45, - 1 as)-¢ 1L == = TIE S GTe
ds u ! 'l\o.’-w U";:L3'\-‘I_'S__d|/ aT <
L - S /
-~ dS, dhy . BN
-0 = sri c(t',)! :
s as, et oT
I St
3—
-5
- ~
G= (e, N2)
S
at S, 52, 53 =0
3
(ASa -
ds - :
Can® [etw \];- 1/2
Evaluated at ty such that = 37 ' §7¢ | = constant = 1/.7

/

A . . . R o . -
u' {S) is deitermined {rom the velocity condition



A
ar_ oA ou | _ou | [ ad | o28 (46)
= u+ ot ). ot o7 | &Te
SR I
. ou fofu VIR _
evaluated at t such that 7T | oz = constant = 1/.7.

Solutions to the eguations were obtained by numerical integration on
a Bendix G15 computer by the Kutia-Runge-Gill method with variable step-
size selected by a curvature criterion, A range of parameters was selected
and the results for one choice are compared with computations obtained by

the method of Libby and Schetz (ci Ref. 2).




DISCUSSION OF RESULTS

Calculations were carried out at a particular point along a typical

Launch Trajectory. Previous estimates (i.e., Ref. 1) indicate that the minimum
delay lengths associated with the Hydrogen occur at altitudes of about 45 kilometers;
therefore, most of the calculations were performed at an altitude of 45k. m., at an

. 0 0 B -
ambient temperature of 275.8 k, and ambieiwt pressure of 0. 00157 atmosphere.
The vehicle velocity was 5780 ft/sec, Iieat transfer results are shown in Figures
2A - 2K.

1

The idealizations employed in this report have some consequences on the
applicability of the analysis. Thus, the simplilications of lamiinar, constant
pressure {low restrict this study to high altitude condilions or other revgimes where
it is resonable to expect laminar flow. The choice of unity Prandil and Lewis
numbers are justified by the simplicity of the subscqucent analysis. The assumptiion
of equilibrium chemistry and the flame sheew model there to requires that static
temperature and pressure levels be suiliciently clevated to insure a reactdon time
small in comparison with characteristic {low times; however, since localized

. ‘
conditions o. .ue missile can gencrate shocks and hot boundary layers along the
vehicle surface, reations may be initiated and be sustained by the subscquent heat
relecase. Most of the calculations periormed nercin contained initial static conditions
which indicate . ~ation times comparable (o characteristic {low times,; hence, ihe
corresponding equilibrium chemisiry calculaiions must be re.arded as being
initiated by a local higher temperature region ncar the lip of the slot. A calculaiion,
shown in Figure 2J was performed for a higher external teimperature so that the

self-ignition and equilibrium chemisiry condilions were attained.
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In general, results of the analysis indicate that choice of the velocity
N
ratio uj is relatively unimportant in determininzs the overall length of the reation
zone (flame length). This is in contradistinction with the results obtained for free
jets as reported in Ref. (7). The lack of sensitivity is due to the relatively short

region of influence of the jet flow on the wall layer compared to that of the external

flow, i.e., the boundary layer due to the jet is quictly submerged. The flame

V2

*. . . - 0. . . ;
length, y , is the directly proportionai to aRca\p_; /P, that is, holding .he
/

external conditions constant, v is proportional to the square of the slot height
and jet density ratio. The region of heat transfer reduction scales in a similar way.
Results for various jet velocity ratios indicate thai, for equilibrium
chemistry flames, reduction of that ratio reduces heat transier uniformly over
the region close to the slot, i.e., where the neat transfer ratio is less than unity,
until some small velocity ratio; further reductiions in the velocity ratio result in
a heat transfer increase at some distance {rom the slot. The principal cause for
this may be seen in the variation of the extent of the region of heat transier re-
duction; for jet velocity ratios decreasing iron: unity the region grows until a
velocity ratio of 1/3 a~1/2 is reached and therealter decreases with further reduction
in velocity ratio. This behavior, in turn, is die to the increased heat transter
into the jet flow from the external stream as tie jgt velocity ratio, Cj = u.i / Ug
decreases, eventually increasing the jetl flow temperature and hence, the heat
transfer to the body.
The length variation of the reduced hcat transfer region and the var.ation
of peak heat transfer ratio with veiocity ratio were of tne order of 20% while the

flame length was relatively unaifected by tiie jet velocity ratio. This occured

because the velocity and element mass reaction solutions scitled down to that



corresponding to the uj Jug= 1 casc in distances much shorter than the {lame
length; however, the enthalpy solution required much longer distances duec to
the variations in the wall enthalpy and ilow {ield tempcratures caused by the
chemical reactions.

The frozen chemistry calculations corresponding to the same initi'al
conditions and wall temperature as the equilibrium chemistry computations
are shown on the same figures. In gencral, the heat transfer ratio goes
smoothly from its value at the sloi to the downsiream asymptotic value in
distances comparable to the ilame length of the corresponding cquilibrium
case.

The heat transfer ratio distribution ior the jet velocity ratio of 2
shown in Figure 2K exhibits the eifects of an energy transicr from the jet
flow to the external flow field. In this casec, it is noted thai the relative values
of the conductivities of hydrogen and air oifsel the increase in total exterial

enthalpy seen by the wall layer so that wnitieliy, the heai cransicr rallo was

4
)
-
[¢€

approximately uniity. Even 50, tie appearance of tie iarge heat transter
associated with combustion was Celayed considerably. And, iathe event of no

occurence of combustion a reduciion ia tne heat wransfer was found.

- .. . . R
Figures 2F-H, illustraie the iarge citect ot tae jet density ratio | J \i
L Pe
on the flame length, Figure 21 shows the smualler eflect oi the wali temperature.

In Tigure 3 a comparison is shown belween the present resuits and those
of Libby and Sclieiz (i.e., Ref. 2; for equilibrium chemistry. There 18 a suo-
stantial agreemen. beiween the Lwo analyscs.

Some typical properties of the constant wall temperature solution are

shown in Figures 4-8,



(W)
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In sum, the results illustrate the advantages of injecting cold gases
into the boundary layers of launch vehicles, In many cases, reactions may e
assumed to occur, and it is seen that t'hc heat transfer rise associated with
combustion occuring close to the body may be delayed for substantial distances
downstream from a sloi injector and occurs in a region of r~iatively low heat
transfer, For a given mass flow of material and a given slot height , it seems
desirable to inject a cold, and, hence, dense gas. (It is noted that this implies

a correspondingly low injection velocity. )
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to the Rayleigh-Stokes problem associated with the constant wall enthalpy
case can be adapted to a nonuniform wall enthalpy problem (the constant
wall temperature case, for example). The solution to the Rayleigh-Stokes
problem associated with an arbitrary wall enthalpy distribution may be

derived. It will be shown that the heat transfer at the wall is close to that

<3}

given by the local similarity solution,
. . . - . [~ \ . s -
Considering the variable H = h° -h,, , the cquations and boundary
W q

conditions for the related Rayleign proolem is:

oH _o'H _
3S, 9T?
Satisfying:
T = O: = Iy = hy- E"‘Wo
T = o o= [, = 47, -h
e (&1 VJO ‘
(1)
Sg= 0: O<T$1;H:Hj:h°j-‘nwo

T>1,; H=H

’

w
~
<

This is broken inio two probiems which, wihen superimposed, sati
all the boundary conditions,

1. Hg satisfies the equations and ithe following boundary conaitions:

T = 0 Hgy= O Sg= 0: 0<T 51, THy= HJ,»
(2)
T— « H. = H T>1 ; H_.=H



2. H
T = 0 H, =
T = o H, =
S4= 0 H, =

The solution for H, is obtained by

to Problem 2 where

satisfies the equation and the conditions:

Duhamel's principle from the solution

H; (T=10) =1
Hence the solution to the exact related Rayleigh-Stoxes problem is:
0 o b
. o [ 7 ) hs -n r [T-r ) T
h = hw + hj -h \_erf,{ - ’+ i terf — it er:i ! — t
o Swg) Vasy o 2 | Wasy | e |
i L
4 3 (4)
2 [Sh (n-nspl T ‘\ SN PN
4 T -h o, exp:
T o J w Yo i C4(:px); 9\4(54_\& }
o \
and since
> sy
i [T \ L R
2 - | o ! expi- ; dx = eric f - !
~ = H - : “ oy ot
PNT \\4\54A)/ EEICE | Vs,
This solution may be written as
. - I -
T 0 A P I T-1 1 [ T+1 V|
h°= h h° ‘"{— I 4 — erf | +er: P
= w+( J “nw) eri{’\/ésif'T 2 EL ‘k'\/‘}s.;} ~ € A{ '\,—‘;b* I Il
L J
4 =1 g v T Y (3]
+ 2. [ i h, (0 ST CEP T PCA
T J“' J] { WKX/ W ’I";I"\ ‘7'\&:“/\) ; l ‘X(S‘;“)\) }
o i i
° ’b‘{ 3 2 \
o o 4 ; / v ! ,"' T VoL
-— T N » «d{ — .t exp__’_ ; d
W =hy g +TiNT \WMf'*‘vv(h‘z'_zz\w'é(%—x); U =S,
o i i
A}



o . o .
where h”1 g is the local similarity result,

Lo

The general distribution of wall ¢athalpy may be locally approximated by

the Taylor series valid in the segment S; ;<5< 5;, The contribution of any

particular segment to the integral term in Eq. 6 may be evaluated as follows:

Define
S L]
4 (41 T |3 -T°
L= 7edm | RNV ATES )] P \Tas, ] D
S

n

-~ 2 1 -
ﬁA JBialTT  hwi T [~ \ T \
o ; earic -er.icC !
1 i-1 i e | ey ab
L 2 24 } \\/a.'\bq-s-[}i_l“ Y 4&84—541) |
. 'R} 5] i e e e l
1 ;‘Bl"i ’T‘Z h\y; iT‘i ! l'\- 4(8\1-5& ~ 3 j,’ _fT-Z \\ \‘7{(54_% )expf "
- F + - i 2 = i o 1 L o !
Nubooo2 24 :~ T 31 S2-Ss. M i i1 4{S,4-5, .
| It \\ 4 ‘11—’&,] 4 H
" h 32 52
-~ . ! { 2 N
CBwia T (5454 ), ot 4(Ss-50 | )
h }{ { exXpi— - l _—__‘__Z—‘_L_‘ €exp 4( ~ S o
! 2 L'S .S, 1 T i S -
48N T L T / T T P \ ; \ < ‘xk/.{‘
. 1 2
h A=h,, +(S;-Ss ) n +5 (S4-S b
where T e T L e T
B=h' Ss-S ) kv
wiyt5emBay e
he. . = ho (S
wio] hy, (5“_-1)
« P d
' Denotes =
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and h,,(X ) has been expanded as:

h,(\ ) = Rwi_y +{X _S‘ii-l -

and it was noted that

NS4 1= (N -8y + (S5-54. )

The integral

S4 f ' 3
I 2NN NIV RN SN L
= = b (N e — N
TN REIEYR \xf4(54-x )}
Jo |

. R .- PR - 5
imiming  the contributions irom all

may, thereiore, be approximaied by Sur

preceeding segments

eg:
n
-
I =
. . “
1= 1
where S. =8
@
i
The integral term in Eq. 0 is simply

L . o ah ‘ o
The heat transfer, beinyg propoct . 5~ » may be examinca oy
|

.
consideration of that quantity.
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For small T, it is obvious that for slowly changing wall cnthalpies, the
heat transfer is close to the local simiiarity value. With this restriction, the
two Rayleigh-Stokes problems approacin cach other (the coordinaie siretching
factors also tend to eachn other) .

If the exact Rayleigh-Stokes solution were colloca.ed, the collocacion

condition for determining S; would be:

dS4 1 M - ou W - [ ohTIoT R
— == u'(s)-- = -z oo T
- dS a a7 aT - S o1 dTe g
C w L—_"LL;-[; T | 1
S
where i '
i /S-i
T A
u=ujtv g




English

a

<

£
"

(SN
ol

slot height in physical coordinates

cH
non-dimensional py Prandtl = Pk

%

skin friction coefiicient = ‘Tw/peuez

enthalpy

total enthalpy

indicates two dimicnsional or axisymmetric flow respectively
Thermal conductivity

heat transfer rate

body radius in axisymmetric coordinate system

Deve d

Reynolds number - |
He

transformecd sircamwise coordinates
T
transformed Blasius variable = -
N 4S5
temperature
streamwisce veciocily

normal velocity

streamwisc velocity non-dimensionalized with respect to
free stream conaitions

transformed normal velocity

molecular weignt
normal coordisate

.

specic mas

LG LT a0

element



Greek

Na
U

gv gz: 3;3

T

p

Subscripts

r+

Superscripts

o

transformea sloi height

viscosity
transformed streamwise coordinates
transformed normal coordinate

density

free stream conditions
conditions ai lame sneet
conditions with frozen chemistry
conditions at slot

oxygen

hydrogen

waer

nitrogen

cenotes conditions where T,= 0 (flame sheet impinges upon wail)
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Figure | Schematic Representation of Flow Field

-




TOLIYLLE D e

Distance From Slot (Ft.) . B
10

b 0 0O NOO.

e

i

3,

v

(ORI S

EECRE DR

.

H

-}

e i Y]

j..l

~Figure ZA Heat Traasfer Ratio




OLYLULES 2 10 1

. FemGr i L B AL
JONES S N L SRS T S

Distaace Froem Sleot (Ft.)
> OO Lspb

i

N s o o weodD000 A G oa,NDOD
X 1990 B i1 DO TLTCR I il

ORI DS )

rdors mfq 2 - 154 l Yreirid

S

e

SR



1.0

Distance From Slot
. 10

~3

3.4

e

Figure 2C

Heat Transfer Ratfo




IR VR G B A T I Y AR Y PO S ]

Distance From Siot ( Ft. )
b 59,,L9 ..O b SQLQ.%OO

4 y

i

=]

 Figure 2D Heat Transfer Wﬁ»»c




PAast AN LB A
x by Wb DINGE e .ot

‘Distance From Slot (Ft.) ;
100

b 0o NDOS

<

AW NDOT

B Y
< dsig pgdan
2 soanta

Figure 2E  Heat Transfer Ratio




AT Ny B A

Bl LLE S v R R N N ]

Distance From Slot (Ft.) _ ’
o o vobdQ0- Y v s 0o wad000 s v o wod000

cipedat SEIN I SR . Holvidhopatd o ~faie- retbioil by a.

1
& R
1

;o. N w b 99L96~x0 N [P

.0

2.

1.0

T

o
™

‘
it
o

Figure 2F FHeat Transfer Ratio . | Ey i mw,,

2 <




Distance From Slot (Ft.)

e tfan i

» oo vodd » w o vodfO




N %]

Distance From Slot (Ft.)

s 0o ovodD

N

i

ror e

PPt

W

P e S

!

g geess
PN

e

e

ceep

1 SQLSSD

T

+

b N
Al ; T

0 $000

: T 3 (M

s u s v0bQ000

&‘

I
|

g

2.0 8

e e gy o

SR




1.0

Distance From Slot (Ft.)

o . =10 1300 I ¢ 10000
i & . e
c e . . . - . [ i | « . :
: G . . .
L] i H i + R
) - boee w o - P S E: SR
e i . . fog , G
. . R [ IR S Vo
V [ i ¢ oy
: 3 . . - .
v 4 - el -
i o . v
‘ i [
"
o
B
1
e M N
N “
N +
. .
' i [
: .
-

Figure 21

Heat Traunsfer

Ratio




L O N A T AR RV

Distance From Slot (Ft.) .
1 © 9 & vavodD N v » 0 aovod00 N w & o o wol000 N w » un o vobGO N

]

Chpeedoresny

Tw

¥

Figure 2J Heat Transfer Ratio

TR

i



(SRR e ALY s

e
[ S I AT PAGE N di AL

TYCLEs % 10




N N R R G I B R P T

Distance From Slot (Ft.)

[ ]

»

-

O

R 0
K4

r

LK

: Figure 3 Comparison




EOUYULE S oA G Dy

> v o ~oolf0O w b uavwodD000

| PR

Flame Sheet

: ..:J !

bieipy
H

Figure 4 Typical Wall Enthalpy U??gagw




Distance From Slot (Ft.)

4 5 67891
o d

Figure 5 Typical Heat Transfer Distribution



5 m;.mooo. 2 3

Figure 6 Typical Zcm,mo: Number Distribution

53

bt




®

il

neey v, eandi g

QL & .

ase) Axjstwayn
b3 104 sarqerse) wnjuswopw

‘A31suyg usemiag uo
S
(411)

z

v

S

2

Fa

2

00L

(1994g surery) wnraqr
PUVy uondel g ssey

z




(281

*9se) AI3STWIY) UIZOXJ X0,d SI[qRIIBA WNJUSWIOW
puy uondexq sseN ‘ABisug ueemisg uone[sy gy 2andig

01

P NP

e S

v B R N JGew

00060[

COox HANDAD ¢



aseD La3stway) (399Yg sweyq) vintaqirinby xo4
§93BUIPIOOD WINJUIUWIOW pu® [eDTSAYJ usamiag uone[?2y yg oindrg

00L , .

®
!
§

BEER)

000001 00001
1%0 10°0

LI ITIAD €

I

RN N 30wM




9seD AI318TWIYD) UIZOI J X0
833BUIPIOO0D WINJUIWIOW PUE [BIISAYJ ulamidg uopieray gg 2Indry

S

01

-001
1°0

0 N O

01
1

[~}

1w

N
v o8 N

o T A~

o

L

10°0

PRI fn 6 7 Nw BERLS

6 b



